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S U M M A R Y  
The range of validity of a simple wave approximation to a non-linear set of two dissipative wave equations has been 
studied. The non-linear set is, when the dissipative terms are omitted, totally exceptional. It describes the propagation 
of longitudinal waves in an ideal elastic bar with some viscous stress. Upon a non-linear transformation, the equations 
become linear. These linear equations have been studied first. The results for the non-linear equations are then easily 
obtained by transforming backwards. It turns out that, if the non-linearity is small enough, they are similar to those 
obtained for the linear equations. 

1. Introduction 

1.1. Statement  o f  the Problem 

In physics one occasionally has to deal with sets of partial differential equations which are 
both non-linear and either dissipative or dispersive. An example of such a set might be 

~,+ [1 + ~  (~, fl)]~x = ~(~xx- flxx), (1) 

~ , -  [1 +~(~ , /~)3 /~  = ~( /~x-  ~xx), (2) 

where x runs through the interval ( -  oo, oo), t through [0, oo), ~b(e, fl) and O(e, fi) are con- 
tinuous, often even monotonic functions of ~ and fl,/~ and ~ are real positive constants usually 
much smaller than one and the subscripts x, t denote partial differentiation with respect to x, 
respectively t. A well known example of equations of this type is found in Lighthill's theory of 
waves in a real gas (Lighthill [1]). 

An exact and complete solution for these equations is, at present, beyond all possibilities. 
Therefore, various approximations have to be used. In this paper we are concerned with a 
problem arising in an approximation method used by Lighthill. It applies to a certain class of 
initial value problems for (1) and (2), viz. : 

c~(x, O) = f ( x ) ,  (3) 

fi(x, O) = flo , (4) 

where fl0 is a constant which can be taken equal to zero without any loss of generality. 
When #=0 ,  it is easily seen that (2) is satisfied identically. Then, (1) becomes a first order 

equation in ~, which is easily solved. The resultant solution is a simple wave solution for the 
hyperbolic set obtained by putting # = 0. 

Now, Lighthill's approximation, which for obvious reasons will be called the simple wave 
approximation henceforth, is based on the assumption that, when the initial conditions (3) 
and (4) are prescribed for the equations (1) and (2) with/~ small but not zero, fl will be negligible, 
at any rate for some finite interval of time. In this way one obtains from (1): 

~t+ [1 + e~(~, 0 ) ] ~  = ~ x x ,  (5) 

which is an equation of Burgers type. In Lighthill's example q5 was linear in e. The exact solution 
of the initial value problem is known in that case. Now, the problem is that fl will grow slowly 
from zero and therefore it is not at all obvious that c~ satisfies (5) for longer intervals of time too. 
In general to answer this question would present rather formidable difficulties. In the present 
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paper these will be circumvented by choosing a special form for (1) and (2) for which the question 
can be answered. In this example it turns out that e and/? may eventually become of the same 
order. 

1.2. Choice of  the Example and Method of  Solution 

Our problem could be stated in the following terms. When # = 0 we have as solution a simple 
wave. That is a pure e-wave running to the right (towards positive x). The dissipative terms 
in the right-hand side provide some coupling. This coupling presumably will cause both 
the appearance of an a-wave running to the left and/?-waves in both directions. A first compli- 
cation is that, when # = 0, a shock wave might develop. Undoubtedly this is the most general 
and physically the most important case. However, to keep things as simple as possible, we will 
avoid this which can be done by considering only so called totally exceptional equations in the 
sense of Lax [2]. In these equations q~ depends on/? only, ~ on e. Then, it is easily seen that the 
characteristic speed in a simple wave is constant, therefore no shock wave develops. 

The second point is that it seems plausible to assume that the exact form of the right-hand 
side of( l )  and (2) is not of great consequence for our problem as long as the leading terms are of 
the type indicated. This enables us to choose a form which can be transformed into a linear set 
of equations by means of a non-linear transformation. These linear equations can be solved 
formally. Application of the inverse transformation, then supplies the answer to our questions. 
As a matter of fact most of the information needed can be obtained from the solutions of the 
linear equations directly. In section 2 the set of non-linear equations having the required 
properties as well as the linear system obtained by using a non-linear transformation will be 
given. They admit a conceivable physical interpretation. The linear equations have been treated, 
in connection with the simple wave approximation, extensively in [3]. Some of the mathe- 
matical results obtained in that paper and some new ones will be discussed and interpreted in 
sections 3, 4, 5 and 6. In section 7 we return to the non-linear equations. 

2. The model Equations 

A suitable set of equations can be derived from the equations for longitudinal waves in an 
ideal elastic bar (Broer [4]) by adding a viscous stress term. The coefficient of viscosity is some 
function of the density. It is possible to choose this function in such a way that the equations 
become linear upon transformation to moving (Lagrangian) coordinates. We assume therefore 
the mass and momentum equations in the form 

p,+Vpx+pVx = 0 ,  (1) 

pv, + pvv x = Yo (P - 1)x + (#p2 p - ,  vx)~ ' (2) 

where p is the density, v the velocity, Y0 a constant viz. Young's modulus. In an ideal elastic bar 
the specific energy of deformation is 2111o ( p - l _  Po 1)z, the stress I1o ( p - l _  Po 1). # is a small 
positive constant of the dimension of a kinematic viscosity coefficient. The subscript zero refers 
to the unstrained situation. The sound speed a is given by 

a 2 =  Yop-2. (3) 

Its value a0 for p = Po will be useful as a reference speed. When # = 0 the equations are hyper- 
bolic and the characteristic variables are e = a - v  and/? = a + v. 

It is easy to write (1) and (2) in terms of these variables. For our purposes it is convenient to 
make the equations dimensionless by putting : 

x = Lx' ,  t = Lao 1 t ' ,  # = 2ao L# ' ,  

e = a 0 [ l + 2 e c ( ] ,  / ? = a o [ l + 2 e / ? ' ] .  

In these equations L is some reference length connected with the initial value e (x, 0), c.q: the 
dominant wavelength, e a dimensionless measure for the strength of the wave that mostly will 
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be chosen such that the absolute maximum of the sum of the solutions ~' and 8' is equal to or 
smaller than one. 

Performing the indicated substitutions in (1), (2) and (3), and dropping the accents we obtain : 

~,+ [ I  +2e8]  ~ = - / ~ [ i  + e ( ~ + 8 ) ]  { [ i  + e ( ~ + 8 ) ] ( 8 - ~ ) ~ } x ,  (4) 

8 , - [ ~ + 2 ~ q p x =  ~[ l+~(~+8)]{[1+~(~+8)](8-~)x}x.  (5) 
The equations are of the required form. When terms of O(e/~) are dropped they reduce to special 
(and when # = 0 totally exceptional) cases of(1.1) and (1.2). Now, we transform (4) and (5) to the 
Lagrangian coordinate P0 s = m, where m is the mass coordinate as used in [4]. The details of 
this transformation will be stripped. We notice only the formulas 

<) ~-  s = a ~  v = e ( 8 -  c~), (6) 

(a_]  1 l + e ( ~ + 8 )  (7) = PoP = \ u ~ /  t 

where ~, 8, x, s and t are dimensionless. For the transformed equations we find 

~, +~s = ~'(~ss-  Sss) , (8) 

8, - 8, =/~ (Sss- ~s.~), (9) 

which are linear indeed. 
The initial conditions will be stated in the following way 

c~ (s, 0) = f (s) ,  (10) 

8(s, 0) = 0.  (11) 

3. Balance  Equat ions  

Some conservation laws and balance equations will be derived for (2.8) and (2.9). These equa- 
tions themselves are in the form of a conservation law. Adding and subtracting them gives : 

6 6 (~+/~) + (~-8)  = 0 (a) 
65 ~ ' 

a 
6 (~-8)  + [ ~ + 8 - 2 # ( c ~ - 8 s ) ]  = 0 a~ ~ 

describing conservation of mass, respectively momentum. 
For every natural number n > 2, it is possible to construct two linearly independent balance 

equations of degree n. They may be written in the form: 

6 
6 ~"+  [e"+#ncd l (S s -C~s ) ]+l~(n -1 )ncd"  2)c~(C~s-8~)=0 (2) 
6~ as 

68._6 at ~ [8" + I'nS"-' (Ss- ~s)] - l , ( n -  0 n # " - ~ 8 ~ ( ~ -  83 = 0, (3) 

and have been found from (2.8) and (2.9) by premultiplying the first one by e"- 1 and the second 
one by 8"- 1. When (2) and (3) are added and n has been put equal to 2 the equation of balance 
of energy (kinetic- + deformation energy) is found: 

6t6 (0~2 -1- 82 ) q- 6Sa [O~2__82_[_21,l(O,__8)(8s__O~s) ] +2,u(O~s_Ss) 2 = 0 . (4) 

From subtracting and putting n = 2 a Bernoulli-like equation (when/t = 0 it is the exact Ber- 
noulli-equation) 
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0 z 0 
~7 (~ _f12) + ~s [cd+fiz+z#(~+fi)( f ls-~)]  +2/~(c~2-fi2)= 0 

is found. 
It is obvious that S~oo ~2 ds, if it exists, may be seen as the total energy of the c~-mode at time t. 

~oo [~2 ds can be given a similar interpretation. This will be used later on in the paper. 

4. Some Mathematical and Physical Aspects of the Linear Equations 

4.1. Some Notations 

R : the interval ( -  0% oo) of the real numbers. 
Q: a strip in the s-t plane containing all the points satisfying the inequalities - oo < s< oo and 

0<  t <  T <  oo. 
Consider scalar valued functions u (s, t) defined on R (t fixed) and Q respectively. 
L 2 (R) is a Hilbert-space containing all square integrable functions on R with inner product 

( , )  and norm II II defined by 

fu, l-- f tlull--lu, ut , j -  oo  

u* being the complex conjugate of u. 
The Sobolev-space W"d(R) (m a natural number) is a Hilbert-space containing all L2(R) 

functions u(s) that have generalised derivatives DkueL2(R), where k=  1 . . . . .  m (Smirnow [5]). 
The inner product (,)m and norm II lira are respectively 

(u, v)m = ~, (Diu, Div); [lull,, = (u, u)~, 
i=o 

L2 A(R) is a Hilbert-space containing all functions u a L 2(R), of which the Fourier transform 
(k) defined by 

if(k) = u(s) exp(- iks)ds  (1) 
- - o o  

vanishes identically outside a finite interval I - A ,  A] (A c R), with inner product (,)R,~ and 
norm II IIR,~ defined by 

f ~ u*(s)v(s)ds, IlUlI,,A=(U,U)~,A . (u, 
j -  o o  

Where not stated otherwise all integrations are in the sense of Lebesque and all differentials are 
meant in the generalised sense, although the classical notation will be retained. The Fourier 
transform with respect to s of a function u (s, t) will sometimes be called the spectrum of u. 

4.2. Existence and Uniqueness 

In [3] it has been proved that equations (2.8) and (2.9) are uniquely solvable for every f ~ L 2 (R) 
(WT(R), L~(R))and that for every 0<  t <  T <  oo the solution is an element of Lz(R)(WT(R), 
L~ (R)). Furthermore c~ --*f and/~ -+ 0 as t --+ 0 in the sense of the L 2 (R) (L2 A (R)) norm. The solu- 
tions may be represented by 

1 oo 

c~(s, t ) =  2 ~  1 +  i~  ~ 21 gt2)(k)exp[h(k, ~)t]dk, (2) 

[J(s, t) = ~ 1 + 9~1)(k) exp [h(k, ~)t]dk, (3) 
o o  Go 
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where 

g(*)(k) = - l i # k  (1 - /z  2 k 2 ) - i f ( k ) ,  g(2)(k) = �89 [ - -  1 -{- (1 -- 1,2 k2)~ * ] (1 -/~2 k 2 ) - ~ f ( k ) ,  

h(k, 3 )=  i k (1 -#2k2 ) } -12k2  +ik{  , 

= st -1 

and f ( k ) i s  defined similar to (1). 
The number 1 respectively 2 through the integration symbol means integration in the first-, 

respectively second sheet of the complex k-plane. The first sheet is defined by 

lim (l-/z2k2)~ - i (0< arg k<  n),  
Ik l~  #k 

and the second by 

lim (1 - #2 k2)�89 - i ( O < a r g k < = ) .  
Ikl~ /~k 

This corresponds to cutting the k-plane from - ~ to - # -  ~ and from #-  1 to ~ .  

4.3. Stability and Positive Definiteness of  p. 

It is shown in [3] that for every f e L 2 (R) the solution of (2.8) . . . . .  (2.11) is stable in the sense 
that for all t >_ 0 

[ l ~ ( t ) l l 2 +  [lfl(t)ll 2 < I[/[I 2 , 

which means that the total energy of the system is bounded from above by the initial energy. 
This result has been derived using the equation of balance of energy (3.4). In a physical problem 
p, the density, must be essentially positive i.e. p > 6 > 0. Now, one may wonder whether it is 
possible to choose the initial conditions and e in such a way that this is satisfied. Let f e W2 ~ (R) 
and l[ f lid-<_ x/2. From [3] we infer the existence of ~(s, t) and fi(s, t), continuously depending 
on s, such that for all t > 0 

(s, t) = ~(s, t) (a.e.), fl(s, t) = fi(s, t) (a.e.), 

sup I~l + [ill _-< 1,  
s E R  

the last condition being equivalent to the one posed in section 2 concerning the definition of e. 
It is clear that for e __< 1 - 6' < 1, p is positive indeed. 

5. Monochromatic Waves 

Following section 1 the simple wave approximation of the set of linear equations under con- 
sideration is given by 

~o,+ ~o~-#~o~ = 0 ,  (1) 

~o (s, O) = f ( s )  . (2) 

In this section we shall deal with the particular simple case of solutions (~, fi, %) that are 
periodic functions with respect to s. This may serve as an introduction to the more difficult 
problems arising in dealing with a general initial function f(s) .  

Let 

f ( s )  = exp(ikls)  (k~ real). 

The solutions ~ and fl may formally be found from (4.2) and (4.3) by substituting f ( k ) =  
2rc6 ( k -  k 2), where ~ (x) is the D irac cS-function. We find for ]kl </~-  1 
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z 

where 
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1 + c  ,., c -  1 exp( i k s+ikc t_#kZ t )  ' (3) 2cc exp~tKs-ikct-12kZt)  + ~cc 

i#k 
i/tk exp (iks - ikct - flk 2 t) ~ exp (iks -4- i k c t -  #k 2 t) (4) 
57 

C+i 
C - i exp (iks + k C t -  I~k 2 t) + ~ -  exp ( i k s -  k C t -  #k 2 t), (5) 
5-d- 

#k exp ( i k s -  k C t -  f l k  2 t) , (6) /~k exp (iks + k C t -  #k 2 t) 

c(k) = l(1 -,u2k2)~l (Ikl ~ # - ~ ) ,  

C(k) = l(#2k 2 - 1)~1 (Ikl ~ ~ -  a) 

and, for convenience, the subscript 1 has been dropped again. 
% is given by 

~o = exp (iks - i k t -  #k 2 t) . (7) 

(3) and (4) clearly demonstrate the development of right- and left moving waves, c(k) can be 
seen as a phase velocity. When ]k] >/~ 1, we can speak of travelling waves no longer. Sub- 
stituting sin(kct)= [ e x p ( i k c t ) - e x p ( - i k c t ) ] / 2 i  in (3) and (4), we find for ]k[ </~-1 

c~ = I e x p ( -  ikct) + i(c c- 1) sin (kct) ] exp ( i k s -  f l k  2 t ) ,  (8) 

fl = /~k sin (kct) exp ( i k s -  t~k 2 t) , 
r 

showing that c~ may also be seen as a superposition of a right moving- and a standing-, fl as a 
pure standing wave. 

If I~kl < 1 we expand (1 - / t2k2) ~ around #k=O. In this way we find from (8) 

= [1 + �89 2 k 3 t 4-.. .] exp (iks - ikt - flk 2 t) + [ - �89 2 k 2 sin (kt) + . . . ]  exp ( i k s -  #k 2 t). (9) 

However, as c~ is an analytic function of #k for all finite k (see (3)), this expansion also holds for 
f#k] > 1 and so, for all finite k. 

We have, using (7) and (8) 

c ~ - % = l i # 2 k 3 t  exp( iks- ik t -1~2k2t ) - �89  s i n ( k t ) e x p ( i k s - # k 2 t ) +  . . . .  (10) 

from which we infer that  the difference between c~ and ~0 is "small" if/~2]kl 3 t ~  1. 
The expansion (9) may also be found in a different way which will turn out  to be succesful 

for f e L ~ ( R )  too. 
Write 

= ~ (k, t )exp (iks), fl = fi (k, t )exp (iks), 

then ~ and fl satisfy 

~ t + ( i k + ~ k 2 ) ~ = # k 2 f l ,  f l t 4 - ( - i k + # k 2 ) f l = t ~ k 2 ~ ,  

and so 

~tt + 2# k2 ~t + (#2 k 4 + k 2) ~ =/~2 k4~. (11) 

The initial data  for (11) become 

~(k, O) = 1, ~t(k, O) = - i k - I ~ k  2 . 
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Now, it is quite elementary to show that ~ satisfies the integral equation 

~(k, t )=  ~o(k, t)+/~2k3 f~o sin [ k ( t -  z)] exp [ -#k2( t - z ) ]~(k ,  z)dz, 

where 80 (k, t) = % (s, t) exp ( -  iks). 
The solution of this equation may be found by means of iteration : 

8(o) (k, t )=  8o (k, t), 

f' 8(")(k, t )=  g2k3 8("-1)(k, z) sin [ k ( t - z ) ]  exp [ -#k2( t - z ) ]dz  (n=0, 1 . . . .  ),  
0 

so c~ = Z,=0~176 8(,)(k, t) exp (iks) (for a proof, see [3]). 
Some computations show this expansion to be identical to the one found before. 
For fl a similar procedure may be followed. 
From (10) we see that as t ~ oo the simple wave approximation breaks down. This turns out 

not to be true when f e L~ (R), as will be shown in the next section. Looking at (3) . . . .  , (6) we 
observe that as t ~ oo the dissipation at high frequencies k is much larger than at low fre- 
quencies. When f e L A (R) the solution e (see (4.2)) may be seen as a superposition (integral with 
respect to k) of monochromatic solutions. When t---,oo, only the values in a small {O(t -~) as 
was proved in [3] } vicinity of k = 0 will contribute significantly to the integral. This "explains" 
why f e L~ (R), as t ~ o% leads to results different from those found for monochromatic waves. 
In particular it will turn out that, as t -~ o% the simple wave approximation holds again. 

6. L ~ (R) Solutions 

6.1 An Expansion of the Solution 

To get some insight in the problem stated by (1.1) . . . .  , (1.4), one sometimes uses an expansion 
in a series of ~ and fi, where the solution of the simple wave approximation (1.3) and (1.5) is 
used as the first term in the expansion of ~ (cf. Lighthill [1]). 

The convergence of such an expansion, as far as we know, never has been treated. In general 
this would be very complicated. However, it has turned out to be possible to show convergence 
of such an expansion for the simple case treated here. 

Let fEL~(R) and c~ ~2") and fl(2, 1) satisfy 

, ^,(2n) _ _ / ~ ( 2 n -  1) 

- -  ( n  = 1, 2 . . . .  ) 

and let cd~ 0)=  f(s), ~(2")(s, 0 )=  fl(2"-1) (s, 0 )=  0.  
N (2n) 2n N In [3] it has been shown that for all finite t > 0, E,= o , # convergestoc~,Y~,=ofl(2"+l)# 2"+1 

converges to fi as N ~ oo in the sense of the L~ (R) norm. The method used there runs along lines 
quite similar to those used in section 5 to obtain an expansion in a series of monochromatic 
solutions. 

Other important results, found in [3], are given by 

<: trip 2"A3" ] l ~ l l R , a  , 1 
n + 1  

and will be used repeatedly in the next sections. Finally we add the remark that it is possible to 
prove convergence for functions of which the spectrum is not of bounded support. However 
these functions will not be treated here. 
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6.2. The Start of the fl-Mode and the Left Running a-Mode 

From our considerations in the sections 1.2 and 5 we expect the appearance of a left running 
a-wave and fi-waves in both directions. Let A 3 #2 T ~ 1, then for every t ~ [0, T] : 

]l~--ao--~2~2)]lR,A < II~llR,a, 

I [ f l - ~ f l " ) l l R , a  < [lallR,~, 

which implies that for every t~ [0, T], a 0 +#2~(2) is a good approximation to a and so is 12fl (1) 
to ft. As is easily seen 

a~ = l#2(n#t)-+ ~ d~-exp  I d 2 f  (s-~+t)z]-4~ -J d~+ 

+ �89 i'~.~ [f(~)-�89 d ~  d3f - �88 d2f~d~ 2j exp ~L (s--~--t)2~4-~t- J d~, 

= p  df #fl(1) ~ Oz/tt)-} fTm ~{exp [ (s--~--t)2J - 4 # t  exp [ 4#t A ' 

which confirms our expectations. Some insight in the initial state of the a- and fi-mode may be 
gained by using an asymptotic expansion as t ~ 0 (appendix 1). We find 

#2 [-d2 f dZ f \l I A2 
O~O+#2~(2)=f(s--t) + ~-L~2s2 (Sq-t ) -- ~2S2 (s--tlJ 2 t d3fds 3 (s-  t) + O(t) , 

2 I_ds 

6.3. The Simple Wave Approximation 
For solutions a which are square integrable ~o will be called a useful (good-) approximation to 

in the interval of time [t 1, t2] (t2 > t l ) i f  for every t ~ [tl, tz] 

Ila-aolr < Flail. (2) 

Of course, if (2) is satisfied ~o locally still may deviate considerably from ~. 
Using (2) we immediately find 

II~--~0HR,A ~ (e A3u2'- l)I[0~IIR,A 
and so, for every t~ [0, T], where A3# 2 T ~  1, a 0 is a good approximation in the sense of (2). 
This result is entirely similar to the one found in section 5 where we dealt with monochromatic 
solutibns. 

In [3] it has been shown that the simple wave approximation may fail for some finite time, 
but as t ~ c~ it holds again as then a positive constant K exists such that 

Ila-aoLl.,a < Kt -~ Ilall.,a . 
This result has already been discussed in section 5. In this context we may notice the following 
interesting relation, used in some proofs in [3] : 

II~]l 2 : l [ f l /12+ tivoli 2 

It holds for every f EL 2(R). 
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7. The Non-Linear Equations 

7.1. The Inverse Transformation 

Let f e W2 3 (R) and absolutely integrable on R. Then, ~ and fi are elements of W~ (R) too and 
according to (3.1) IL ~ (~ + [3)ds' exists in the sense of Riemann.  So, by integrating (2.6) and (2.7) 
we find for every finite t > 0: 

s = ~ - ~  [~(s', t)+fi(s', t)3 ds'.  (1) 
--cO 

We are interested in the conditions to be satisfied by f(s) and ~ that  are sufficient for s to be 
solvable from (1) as an univalent function of x and t. Let IIf IJ 1 < x/2, e __< 1 - 6 < 1 again. Define 

So = x ,  (2) 

f~" [8(s', t ) t ) ] d s '  (3) 
1 

S n = X - - ~  -oo q-fi(S~' 

From section 4.3 we deduce suppeR JR + fi[ --<--_ 1, SO (~X/&)~ is essentially positive and consequently 
(1) is uniquely solvable. Fur thermore  

[ s , + ~ - s , [ = ~  ( ~ +  ds' _ - < ( 1 - ~ ) l s , - s , _ ~ [ ,  
sn 1 

which implies that  the sequence defined in (2) and (3) converges to s(x, t) for every finite t. 
It is easily verified that  

S -= ~ ,~n s(n) , 
n = 0  

where 
S (0) ~--- X , 

f 
. ~ n - 1  

ej s(j) 

s(., = _ el - .  ~ j=o [~ (s', t) + fi(s', t)] ds' (n = 2, 3 . . . .  ) n 2 
~,j s(j) 

*~ j=O 

7.2. On a Simple Wave Approximation 

Consider (5.1) and (5.2) where s is replaced by x as the simple wave approximation to the non- 
linear problem. This is not  entirely equivalent to section 1, as the initial value ~o (x, 0) should 
have been equal to f [s (x ,  0)]. However, this is just a mathematical  difference and is not  
essential to the problem as all the aspects of approximating a non-linear problem by a linear 
one are retained. 

Besides we will choose e and f(s) such that  at t = 0 the simple wave approximation does hold 
indeed. 

Let f ~ L ~ ( R )  and absolutely integrable such that  ( a ) q l f l l l <  ,]2, (b) S ~  [ f (s) lds=M (a 
positive constant), (c) f(k) is analytic in a vicinity of k = 0 and let ~ < 1 - 6 < 1. Define : 

~(s ,  t) = [~(s', t)+/~(s' ,  t ) ]ds ' .  

Using [8 +/~] < 1, Schwarz's inequality, change of order of integration and SJ k2 ]g(k)[ 2 dk ~ z] 2 ~ 
[O(k)L2dk, we find: 
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i"~ ]o~(x,t)_ao(X, t)[2dx = 
�9 - 0 3  

= lc~(s,O_C~o(S,t)+~o(s,t)-C~o(S+e~,t)12[1 +~(c~+ fl)]ds 

< 2 1~-~olZds+2 I%(s+eO, t)-~o(S,t)l  2ds< 
-- ,j) ~ - oo 

f i < 2 Ic~-~olads+2e[maxldp(s, t)l] ds ~~ 
s ~ R  x . 

< 2 I~-c~ol2ds+2~Z[maxl~( s, 012] ~o(Sl, t) a 
. . . .  R . . . . .  ~ S '  ds' < 

2 

~o(~, t) da < 

foo 
< 2  f~  ~ 1~-~~ . - ~ J~~ (4) 

where 0_< 0_< 1. 
Using the conservation law of mass (3.1) we find 

i i 4)(s, t) = f(s')ds' + [fi(s, t ' ) -~(s ,  t')]dt' , 
- -  oc 0 

which implies that 

[qS(s, t)l < M + t .  

Substituting this in (4) and using (6.1), we obtain that for all t e  [0, T] (T finite) 

C~o[2dx< { 2 [ e x p ( r # 2 3 3 ) - l ] 2 + 2 ~ 2 z t 2 ( M +  r)~} [C~ol2dx, 
r o9 oo 

(s) 

which implies that if MeA ~ l, T ~ A ( # 4  A4_~_ ~2)�89 the simple wave approximation does hold 
indeed. 

Of course we are also interested in the situation as t ~ ~ .  Now, a difficulty shows up as an 
inequality of the form (5) can be used no longer. However, in appendix 2 it has been shown that, 
as t ~ ,  [q~(s, t ) l<4M.  This implies that given the condition M A s ~  1 the simple wave 
approximation holds again. Therefore, when e and/or A are chosen small enough the situation 
is entirely equivalent to the case treated in the former sections. 

Appendices 

Appendix 1 
Define 

f E K + (s, t) = (/~t) - ~ g (x) exp 
-oo  

(x-  s +_ 0 2 ] 
~ J dx . 

t e m m a  

Let g ~ L~ (R). As t ~ 0, K+ (s, t) has the following asymptotic expansion 

d 2n 
K+(s,t)  ~ 2 ~ (4# t ) " [ (2n ) ! ] - lV(n+ l )d~  ~ 0 ( s + t ) ,  

n = 0  
(1) 
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where 

O(x) = g(x) (a.e.) 

and O(x) is analytic on the real axis. 

Proof. 

Define 

0 (k) exp (ikx) dk ,  o ( x )  = 

then g(x)= 0(x)(a.e.) and O(x)is analytic on the real axis. So O(x) may substitute g(x)in (1) 
and a positive number p exists such that for Ix - s + t] < p 

1 d" _ 
O(x) = a~ n~ dx " O ( s + t )  

n=O 

Furthermore, using formula 7.1.13 of Abramowitz and Stegun [6]: 

+ ( l~ t ) -~O(z+s~- t )exp[-z2(4#t ) - l ]dz  
-- cO p 

< 8 p - l ( # t )  1 1 + 1 + rcp2 / j exp[ -p2(4# t )  -~] (maxlO(z)]). 

Now, all conditions required by de Bruijn [7], page 68, to construct an asymptotic expansion 
of K_+ (s, t) are satisfied. We find (1). 

Appendix 2. 

Lemma 

Let f (s) satisfy the conditions required and ch be defined as in section 7.2. Then, as t ~ oo 

]qS(s, t)[ <=4M. 

Proof. 

As is seen from (4.2) and (4.3) 

def f s 
I = [~(s', t)+fi(s', t)]ds'= 

N 

it] = 1 + 2 ( ik)- 'O(k){exp[h(k,  s t - ' ) t ] - e x p [ h ( k , - N t - 1 ) t ] } d k ,  (2) 
- A  A 

where N >> 1 and 

r (k) = (4•)- 1(1 - -  ]/2 k 2) �89 [1 - i#k + (1 - #2 k2)}]f(k).  

f(k) is analytic in a p-vicinity of k = 0 so we are able to choose a number 0 < 6 < p such that 
along c~+ '=  {k[ Jk[ = 6, -�89189 arg k<  �89 _+�89 

Ir < 3TO-1 If(O)l. (3) 

(2) may be rewritten in the form 

l = I f  6 ( 1 + 2 ) +  t '~ (1+2)+  f (1+2)] ( ik) -er  
-A 6 %+ 

- exp[h (k ,  - N t - ' ) t ] } d k .  (4) 
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As for all k~ R, where [k[ => 6, Re h(k, st- i) < _#32, the first two integrals in the right-hand side 
of (4) are O(t exp(-c~ 2/it)) as t--* c~. (ik)- 1 ~(k) is analytic in a vicinity of k = 0 in the first sheet 
of the complex k-plane. Using the method of saddle-points it is quite standard to derive 

If~. +ll(ik)-l~(k){exp[h(k, s t -1 ) t ] -exp[h(k , -Nt -1 ) t ] }dk=O( t  ~) ( t ~ ) .  

Consider 

Ii = I t'% + 2 ] (ik)- l ~ (k) exp [h(k, st-1)t] dk . (5) 

Choose 6 < lpla2 and define e = 2 @  1. Let s > (1 +e)t. Then by choosing 6 small enough, 
Re h<  0 along co+. Thus, substituting k = a e  ~ in (5) and using (3) we find JItP < 3[f(0)l. If 
s<  (1 -e ) t ,  then, to obtain Re h < 0, we must shift the path of integration to co_. This leads to 
II1[< 7ff(0)r. Now, let ( 1 - e ) t <  s <  (1 + 0 t .  The saddle-point of h(k, st -x) is located on the 
imaginary axis of the k-plane, inside the circle]k I--p (cf. [3]). By using the method of saddle- 
points as developed by van der Waerden [8], we find that, as t--+oe, ]Ill< �88 Applying 
the results concerning I a to (4) and using the results obtained earlier in the proof we deduce the 
lemma. 
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